Brain Insulin Signaling: Implications for Disease Modelling and Treatment of Mood Disorders

Rodrigo Barbachan Mansur, MD, PhD Associate Professor of Psychiatry, University of Toronto Staff Psychiatrist, University Health Network

Mood Disorders Psychopharmacology Unit medicine / research / technology / education

Toronto General Toronto Western Princess Margaret Toronto Rehab

Presenter Disclosure

- Faculty: Rodrigo B. Mansur, MD, PhD
- Relationships with commercial interests:
 - Grants/Research Support: Canadian Institutes of Health Research (CIHR), Physicians' Services Incorporated (PSI) Foundation; Baszucki Brain Research Fund; Department of Psychiatry, University of Toronto
 - Speakers Bureau/Honoraria: None
 - Consulting Fees: None
 - Other: None

Summary

Introduction

- Metabolic dysregulation in mood disorders
- The role of insulin signaling in the brain
- Insulin signaling and Domains of Psychopathology
 - Cognition
 - Reward
- Implications
 - Disease Modelling
 - Therapeutic

Obesity and Major Depressive Disorder

Figure 4. Age-adjusted percentage of adults aged 20 and over who were obese, by sex and depression severity: United States, 2005–2010

¹Statistically significant trend.

²Significantly different than other severity categories.

NOTES: Estimates were age-adjusted by the direct method to the 2000 U.S. census population using the age groups 20–39, 40–59, and 60 and over. Moderate and severe indicate depression, while mild indicates mild depressive symptoms, which are not included in the definition of depression. Access data table for Figure 4 at: http://www.cdc.gov/nchs/data/databriefs/db167_table.pdf#4.

SOURCE: CDC/NCHS, National Health and Nutrition Examination Survey, 2005-2010.

Metabolic Comorbidities and Bipolar Disorder

Jackson et a. Bipolar Disord. 2015; Zhao et al. J Affect Disord. 2016

Vancampfort et al. J Clin Psychiatry. 2015; Vancampfort et al. World Psychiatry. 2015; Grant et al. Arch Gen Psychiatry 2004.

Insulin Resistance in MDD

Table 1

Statistics summary of between-group meta-analyses of peripheral insulin resistance in depression.

Group-wise	No. of Pairwise	No. of Subje	ects	Meta-analysis		
Between-Group Meta-analyses		Dep	НС	Hedges' g	95 % CI	Р
Depression Acute - ALL						
Insulin						
All*	49	26,197	195,314	0.29	0.21-0.37	< 0.001
Age paired*	26	2,288	14,003	0.33	0.19-0.48	< 0.001
Sex paired*	26	2,025	14,622	0.34	0.20-0.48	< 0.001
BMI paired*	25	20,084	162,584	0.30	0.17-0.44	< 0.001
HOMA Index						
All*	34	21,695	183,163	0.30	0.18-0.41	< 0.001
Age paired*	17	2,077	11,961	0.31	0.15-0.48	< 0.001
Sex paired*	18	2,217	12,714	0.20	0.04-0.36	0.01
BMI paired*	18	19,801	159,585	0.32	0.14-0.50	< 0.001

B.S. Fernandes et al. Neuroscience and Biobehavioral Reviews 139 (2022) 104758

Metabolic Abnormalities Precede the Onset of Mental Illnesses

TABLE 2. Cox regression models of the association between triglyceride-HDL ratio, waist circumference, and fasting plasma glucose level at study enrollment and incident major depressive disorder in adults $(N=601)^a$

Model	Adjusted Hazard Ratio	95% CI
Model 1: triglyceride-HDL ratio	1.89	1.15, 3.11
(insulin resistance; 1 ratio unit)		
Model 2: waist circumference (5 cm)	1.11	1.01, 1.21
Model 3: fasting plasma glucose ^b	1.37	1.05, 1.77
(1 mmol/L)		

^a Data are for participants in the Netherlands Study of Depression and Anxiety. Each model was adjusted for age, sex, education, physical activity, harmful alcohol use, and smoking status. Follow-up time was 4,579 person-years for all models. HDL=high-density lipoprotein.

^b Adjusted for medication use as described by Révész et al. (35).

Expression of Insulin Receptors in the Brain

Figure 1: Expression of the insulin receptor in the human brain

Kullmann et al. Lancet Diabetes Endocrinol 2020; 8 524–34.

Brain Insulin Signaling

Figure 3: Central insulin action in humans

Kullmann et al. Lancet Diabetes Endocrinol 2020; 8 524–34.

Insulin and Functional Connectivity

Figure 3. Intranasal insulin increases functional connectivity between the dorsal medial prefrontal cortex (PFC) of the default-mode network (DMN) and the hippocampus in lean, overweight and obese participants.

Kullmann et al. Sci Rep. 2017 May 9;7(1):1627.

Kullmann et al. Physiol Rev. 2016 Oct;96(4):1169-209.

Summary

- Introduction
 - Metabolic dysregulation in mood disorders
 - The role of insulin signaling in the brain
- Insulin signaling and Domains of Psychopathology
 - Cognition
 - Reward
- Implications
 - Disease Modelling
 - Therapeutic

Research Domain Criteria (RDoC) Framework

https://www.nimh.nih.gov/research/research-funded-by-nimh/rdoc/about-rdoc.shtml

Cognitive Function and Mood Disorders

Meta-analysis of first episode bipolar disorder

Table 3

Number of studies (*k*), pooled sample size (N), pooled ES (Hedges' *g*), homogeneity (Q, *I*, tau²), publication bias, and sensitivity analyses (pooled ES range; each study removed), by cognitive domain.

Cognitive domain	k	BD N	CTL N	Hedges' g	95% CI	Q	Ι	tau ²	Egger's test (t)	Fail-safe N	Trim & Fill	Sensitivity analyses
Psychomotor speed	6	170	349	0.56**	0.19-0.92	15.67*	68%	0.14	3.27*	35	0.56*	0.42-0.67
Attention/working memory	8	259	891	0.37***	0.22-0.51	6.28	0%	0.00	1.77	_	_	0.34–0.44
Learning and Memory												
Verbal	6	194	486	0.30***	0.13-0.48	4.38	0%	0.00	1.46	_	_	0.25-0.36
Visual	5	172	445	0.17	-0.02 - 0.35	3.61	0%	0.00	_	_	_	_
Executive Functioning												
Attentional switching	6	170	349	0.52***	0.28-0.78	6.70	25%	0.02	6.30**	37	0.34*	0.44-0.61
Verbal fluency	10	296	939	0.32***	0.18-0.47	9.43	5%	0.00	2.42*	51	0.32*	0.28-0.37
Cognitive flexibility	7	198	356	0.41**	0.12-0.70	14.69*	59%	0.09	0.38	_	_	0.33-0.49
Response inhibition	5	161	288	0.44***	0.24-0.65	3.82	0%	0.00	0.25	_	_	0.36-0.51
Total <i>k</i> /N	12	341	1009		J							

BD = Bipolar Disorder. CTL = Control. ES = effect size.

* $p \le 0.05$. ** $p \le 0.01$. *** $p \le 0.001$.

Obesity and Metabolic Syndrome Are Associated With Cognitive Deficits in Patients With BD

Patients with BD who were overweight/obese had significantly impaired global cognition and performed significantly worse in executive functions and processing speed than patients with BD whose weight was normal*

Cognition and Energy Metabolism

Fig. 1. Correlations between cerebral glucose metabolism and executive function in patients with remitted bipolar disorder and healthy subjects. ACC = anterior cingulate cortex; DLPFC = dorsolateral PFC; L = left; mPFC = medial PFC; O-I = operculum-insula; PFC = prefrontal cortex; R = right.

Brain Insulin Resistance and Cognitive Function in Individuals with BD

* Adjusted for age, gender, education, depressive symptoms severity and EV concentration

Insulin receptor substrate-1 phosphorylation at serine site 312 (IRS-1 p-S312), measured in neuronal origin-enriched extracellular vesicles, which has been associated with attenuated insulin signaling

Mansur, Lee, Delgado-Peraza, Nogueras-Ortiz, Chawla, Kapogiannis, McIntyre. Unpublished data

Brain Insulin Resistance and Atrophy in BD

Mansur, Lee, Delgado-Peraza, Nogueras-Ortiz, Chawla, Kapogiannis, McIntyre. Unpublished data

Mansur, Lee, Delgado-Peraza, Nogueras-Ortiz, Chawla, Kapogiannis, McIntyre. Unpublished data

Anhedonia is a Transdiagnostic Construct

Psychiatric

- Mood disorders
- Psychotic disorders
- Substance abuse
- Eating disorders

Anhedonia

Medical

- Obesity
- Diabetes mellitus
- Rheumatoid arthritis
- Cardiovascular disease

Neurological

- Parkinson's disease
- Alzheimer's disease
- Multiple sclerosis
- Epilepsy

Pizzagalli DA. Annu Rev Clin Psychol. 2014;10:393-423.

Insulin, Leptin and Dopamine Neurons

Expression of leptin receptors and insulin receptors in DA neurons of the VTA.

Co-localization is shown by yellow neurons in the merged images of tyrosine hydroxylase/leptin receptor (C) and tyrosine hydroxylase/insulin receptor (F).

Figlewicz et al. Brain Res. 2003 Feb 21;964(1):107-15.

Brain Insulin Resistance

NIRKO mice:

Mice with a neuron-specific disruption of the insulin receptor gene

Insulin and Reward Behavior in MDD

Willingness to make physical efforts for rewards is associated with peripheral insulin resistance, after adjustment for relevant confounders, in individuals with major depressive disorder.

Mansur et al. J Affect Disord. 2019

Insulin Resistance and Reward Neurocircuitry

A composite score for glucose-related markers was negatively associated with ventral striatum (VS)-ventromedial prefrontal cortex (vmPFC) and dorsal caudal putamen (dcP)-vmPFC functional connectivity (FC) in unmedicated MDD patients

Central Insulin and Dopamine Signaling

Figure 3. [¹¹C]-raclopride binding potential (BP_{nd}) in ventral and dorsal striatum on insulin and placebo day. Line diagrams show significant higher BP_{nd} in ventral and dorsal striatum after insulin compared with placebo spray application.

Kullmann et al. J Clin Endocrinol Metab. 2021 Sep 27;106(10):2949-2961.

Summary

- Introduction
 - Metabolic dysregulation in mood disorders
 - The role of insulin signaling in the brain
- Insulin signaling and Domains of Psychopathology
 - Cognition
 - Reward
- Implications
 - Disease Modelling
 - Therapeutic

What are Psychiatric Diagnosis?

- Four ways of thinking
 - Essentialist categories
 - Classes whose members share an essence from which their defining features arise.
 - Social constructions
 - Classes whose members are defined by the cultural context in which they arise.
 - Practical kinds
 - Defer metaphysical questions about ' reality ' and focus on defining classes that are useful.
 - Mechanistic property cluster model of kinds
 - Defined not in terms of essences but in terms of complex, mutually reinforcing networks of causal mechanisms.

What are Psychiatric Diagnosis?

Essentialist categories

Fig. 1. An essentialist model for a psychiatric disorder in which an essence (E) is directly and causally responsible for all of the key defining features of the disorder (labeled F_1 to F_5).

Mechanistic property cluster

Fig. 3. Another possibility for a property cluster kind in which we have a series of causes (C_1 to C_4) that interact with each other to produce an underlying state (US) that in turn leads to the individual clinical features (F_1 to F_5). These causal processes could be psychological or biological. These clinical features in turn could causally interact with each other.

Neural Control of Energy Expenditure

Heuristic Implications

Identifying Subgroups

Mansur et al. Bipolar Disord. 2020 Feb;22(1):79-88.

Identifying Subgroups

TABLE 3 Differences between clusters

	MH n = 137	GT n = 131	IR n = 84	n	Overall P-value
Adjusted for age, gender, cohort, diagnosis, and u	se of antipsychotics				
Body mass index (kg/m²), mean (SE)	26.60 (0.50)	30.96 (0.60)	32.77 (0.78)	296	<.001 ^c
Metabolic syndrome (z-score), mean (SE)	-0.19 (0.29)	0.77 (0.31)	0.50 <mark>(</mark> 0.35)	191	<.001 ^d
MAP, mean (SE)	92.90 (1.51)	96.01 (1.70)	101.59 (1.97)	194	<.001 ^c
CRP, mean (SE)	3.38 (0.34)	4.92 (0.53)	4.40 (0.51)	155	.015 ^c
MET-hs (total), mean (SE)	30.00 (5.19)	22.36 (3.26)	22.48 (4.67)	117	.290
Depressive symptoms, mean (SE)	16.62 (0.89)	15.39 (0.85)	15.32 (1.03)	277	.435 ^c
SHPS, mean (SE)	5.67 (0.40)	5.44 (0.37)	5.58 (0.51)	138	.869 ^e
DSST, mean (SE)	54.45 (1.78)	49.91 (1.87)	55.99 <mark>(</mark> 2.05)	186	.038 ^{d,f}
SDS, mean (SE)	20.04 (1.04)	23.29 (1.27)	19.77 (1.23)	169	.038 ^{c,f}
Age at onset (years), mean (SE)	20.80 (0.97)	21.41 (1.06)	19.10 (1.16)	285	.292 ^{c,f}
Illness duration, mean (SE)	17.46 (1.16)	15.91 (1.10)	19.57 (1.65)	283	.145 ^{c,f}
Number of mood episodes, mean (SE)	18.16 (2.81)	15.30 (2.21)	21.09 (3.77)	229	.320 ^{c,f}

Identifying Subgroups

Mansur et al. Bipolar Disord. 2020 Feb;22(1):79-88.

Summary

Introduction

- Metabolic dysregulation in mood disorders
- The role of insulin signaling in the brain
- Insulin signaling and Domains of Psychopathology
 - Cognition
 - Reward

Implications

- Disease Modelling
- Therapeutic

Mansur et al. J Psychiatr Res. 2021 Jan;133:82-92.

Changes in Insulin Biomarkers and Cognitive Improvement

Mansur et al. J Psychiatr Res. 2021 Jan;133:82-92.

Therapeutic Implications – Intranasal Insulin

62 adults with bipolar disorder I / II received intranasal insulin (40 IU QID, n=34) or placebo (n=28) for 8 weeks

TMT A: time × treatment interaction, p=0.70

TMT B: time × treatment interaction, *p<0.05

McIntyre RS et al. Bipolar Disord 2012;14:697-706

Intranasal Insulin and MDD

Table 5

Treatment effects analyses and statistics (F- and p-values) following subchronic intranasal insulin administration.

	Time			Treatment	reatment			Time x Treatment			
	F-value	p-value	Effect Size d	F-value	p-value	Effect Size d	F-value	p-value	Effect Size d		
Mood Scales											
MADRS	F(1,34) = 3.066	p = 0.090	0.584	F(1,34) = 0.641	p = 0.429	0.267	F(1,33) = 0.487	p = 0.490	0.233		
PANAS Positive Subscale	F(1,34) = 31.582	p = 0.112	1.873	F(1,34) = 0.547	p = 0.595	0.247	F(1,33) = 0.093	p = 0.811	0.102		
PANAS Negative Subscale	F(1,34) = 0.076	p = 0.829	0.092	F(1,34) = 4.836	p = 0.272	0.733	F(1,33) = 0.114	p = 0.792	0.113		
Neurocognitive Measures											
[*] Global Index of Neurocognition	F(1,34) = 8.465	p = 0.006	0.970	F(1,34) = 0.008	p = 0.929	0.030	F(1,33) = 0.069	p = 0.795	0.088		
AGN (Correct Response)	F(1,33) = 0.170	p = 0.683	0.137	F(1,33) = 0.203	p = 0.655	0.150	F(1,33) = 0.498	p = 0.533	0.235		
*ERT (Correct Response)	F(1,34) = 1076.00	p = 0.019	10.934	F(1,34) = 0.082	p - 0.822	0.095	F(1,33) = 28.24	p = 0.118	1.771		
[*] ERT (Response Time)	F(1,34) = 137.69	p = 0.054	3.911	F(1,34) = 0.270	p = 0.695	0.173	F(1,33) = 0.014	p = 0.924	0.039		

35 adults with MDD were randomized to 4 weeks of either intranasal insulin (40 IU QID, n=19) or placebo (n=16) in a double blind, placebo-controlled, crossover design.

Cha et al. J Affect Disord. 2016 Dec 18;210:57-65.

GLP-1R Agonists and Neuronal Insulin Signaling

GLP1 Receptor Agonists

19 individuals with MDD or bipolar disorder BD and an impairment in executive function received liraglutide 1.8mg/day for 4 weeks in an open-label, proof-of-concept design

Mansur et al. J Affect Disord. 2017 Jan 1;207:114-120.

GLP-1R Agonists in Mood Disorders

Adjunctive Semaglutide for the Treatment of Cognitive Dysfunction in Major Depressive Disorder: a Randomized, Double-Blind, Placebo-Controlled Study (NCT04466345)

Collaborative Care

Table 2 Weight Less Depression and Anviety Outcomes

 12-month intervention that integrated a Diabetes Prevention Program—based behavioral weight loss treatment with problem-solving therapy for depression and, if indicated, antidepressant medications

	Unadjusted Estima	tes	Treatment Difference	
	Intervention	Usual Care	Adjusted Between-Group Difference (95% CI) ^a	P Value
Primary Outcomes				
Body mass index				
No. of participants	202	198		
At 6 mo, mean (SD)	36.0 (6.9)	36.6 (6.2)	Mean, -0.6 (-0.9 to -0.3)	<.001
At 12 mo, mean (SD)	35.9 (7.1)	36.6 (6.0)	Mean, -0.7 (-1.1 to -0.2)	.01
20-Item Depression Symptom Ch	ecklist (SCL-20) score ^b			
No. of participants	184	187		
At 6 mo, mean (SD)	1.1 (0.7)	1.4 (0.8)	Mean, -0.3 (-0.4 to -0.1)	<.001
At 12 mo, mean (SD)	1.1 (1.0)	1.4 (1.3)	Mean, -0.2 (-0.4 to 0)	.01

Ma et al. JAMA. 2019 Mar 5;321(9):869-879.

Exercise as an Anti-Depressant

Schuch et al. J Psychiatr Res. 2015 Feb;61:25-32.

Metformin for Weight-Gain Prevention

	Met	formin		Pla	icebo			Mean Difference	Mean Difference
Study or Subgroup	Mean [kg]	SD [kg]	Total	Mean [kg]	SD [kg]	Total	Weight	IV, Random, 95% CI [kg]	IV, Random, 95% CI [kg]
1.1.1 First episode									
Armen 2008	0.83	12.94	16	2.2	20.04	16	1.1%	-1.37 [-13.06, 10.32]	
Wang 2012	-3.3	7.9603	32	2.5	6.9415	34	6.1%	-5.80 [-9.41, -2.19]	
Wu 2008 B AM J	1.9	2.72	18	6.87	4.23	19	8.5%	-4.97 [-7.25, -2.69]	
Wu 2008 JAMA	-3.2	1.9415	32	3.1	1.9415	32	10.8%	-6.30 [-7.25, -5.35]	
Wu 2012	-2.37	7.459	42	2.15	5.789	42	7.4%	-4.52 [-7.38, -1.66]	
Subtotal (95% CI)			140			143	34.1%	-5.94 [-6.75, -5.12]	♦
Heterogeneity: Tau ² =	= 0.00; Chi ² =	= 2.79, df	^c = 4 (P	= 0.59); l ² =	= 0%				
Test for overall effect	:: Z = 14.27 (P < 0.000	001)						
1.1.2 Chronic									
Baptista 2006	5.5	3.3	19	6.3	2.3	18	9.4%	-0.80 [-2.63, 1.03]	
Baptista 2007	-1.4	3.2	36	-0.18	2.8	36	10.2%	-1.22 [-2.61, 0.17]	
Carrizo 2009	-1.87	2.9	24	0.16	2.9	30	9.9%	-2.03 [-3.59, -0.47]	
Chen 2012	-3.2	3.1	28	-0.2	2.1	27	10.2%	-3.00 [-4.39, -1.61]	
de Silva 2015	-1.56	4.16	34	1	2.26	32	9.8%	-2.56 [-4.16, -0.96]	
larskog 2013	-3	4.34	75	-1	4.23	71	10.2%	-2.00 [-3.39, -0.61]	
Klein 2006	-0.13	2.88	15	4.01	6.23	15	6.4%	-4.14 [-7.61, -0.67]	
Subtotal (95% CI)			231			229	65.9%	-2.06 [-2.71, -1.41]	♦
Heterogeneity: Tau ² =	= 0.08; Chi ² =	= 6.74, df	⁼ = 6 (P	$= 0.35$; $I^2 =$	= 11%				
Test for overall effect	:: Z = 6.24 (P	< 0.0000)1)	.,					
Total (95% CI)			371			372	100.0%	-3.24 [-4.55, -1.92]	•
Heterogeneity: Tau ² =	= 3.89: Chi ² =	= 65.58. 0	df = 11	(P < 0.0000)	(1): $ ^2 = 8$	3%		- · •	
Test for overall effect	Z = 4.84 (P	< 0.0000)1)		_,, . 0				
Test for subgroup dif	ferences: Chi	$^{2} = 53.27$	7. df =	1 (P < 0.000)	01). $ ^2 =$	98.1%			Favours [Metformin] Favours [Placebo
. eet for subgroup un	.e. ences. em	55.E1	, a.		· _/, ·	5 5.1/0			

de Silva et al. BMC Psychiatry. 2016

Acknowledgements

Mood Disorders Psychopharmacology Unit medicine / research / technology / education

- Roger McIntyre
- Joshua Rosenblat
- Joshua Di Vincenzo
- Andrea Mckenzie
- Aniqa Tabassum
- Lee Phan
- Hartej Gill
- Farhan Fancy
- Sebastian Badulescu

Canadian Institutes of Health Research Instituts de recherche en santé du Canada

BASZUCKI

BRAIN RESEARCH FUND