A Practical Guide to Brain Stimulation: Therapeutic Options and Recent Advances

Daphne Voineskos MD, PhD, FRCPC Medical Lead, rTMS Clinic, Poul Hansen Family Centre for Depression Labatt Family Professor in Depression Biology Assistant Professor, Department of Psychiatry, University of Toronto

Disclosures

- Labatt Family Professorship in Depression Biology
 - A University Named Professorship at the University of Toronto
- Research Support held from:
 - CIHR
 - CAMH
 - Centre for Mental Health at UHN
 - Department of Psychiatry at U of T
- No Biomedical COI

Objectives

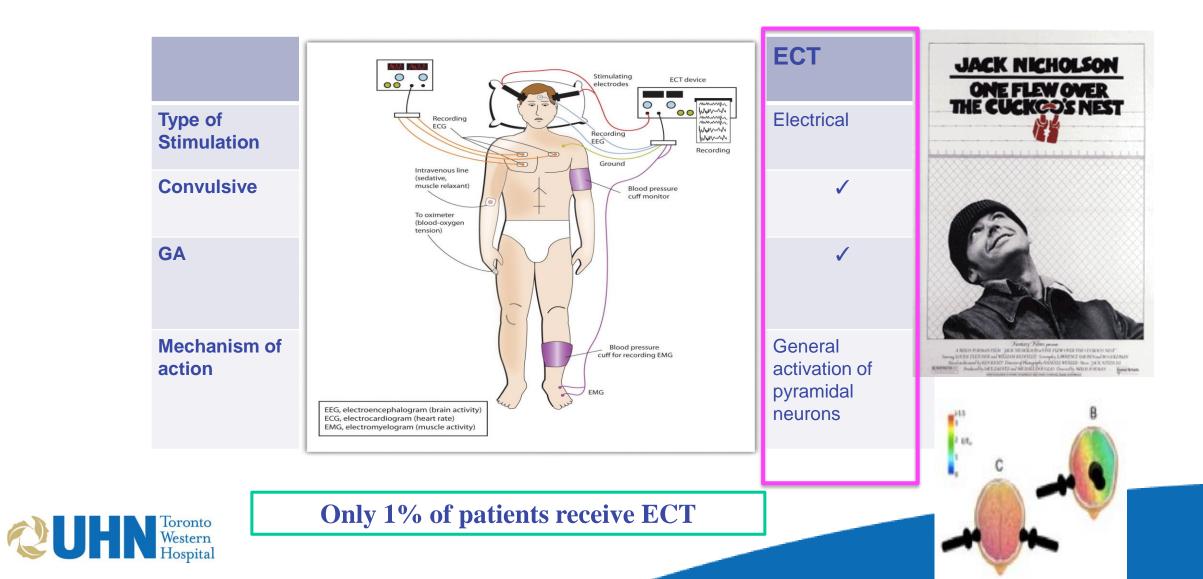
- 1. List the available Brain Stimulation therapies and their indications
- 2. Describe recent advances in the field of Brain Stimulation
- 3. Understand how Brain Stimulation options may be applicable for patients in clinical practice

What is brain stimulation?

Google	Q what is brain stimulation	XQ		®
Q All 🗉 Nev	 what is deep brain stimulation what is brain stimulation therapy 			
About 542,000,0	 how does deep brain stimulation work what is deep brain stimulation used for 			
Deep brain ept 3, 2021 — [brain stimulation device who is a good candidate for deep brain stimulatio 	n	Deep brain stimulation	<
reas of the brair	 what is the success rate of deep brain stimulation deep brain stimulation side effects 		Deep brain stimulation is a neurosurgio involving the placement of a medical do neurostimulator, which sends electrical	evice called a
People also	ask :	ort inappropriate predictions	through implanted electrodes, to specif	
	mulation used for? ulation feels like?	~	Procedure Success rate	~
oes Deep Brai	n Stimulation damage the brain?	~	Placement	~
low is stimulation	on used to study the brain?	~	Treaty	~

Feedback

https://www.hopkinsmedicine.org > health > deep-brain...



Therapeutic Brain Stimulation

	tDCS	rTMS	MST	ECT	DBS
Type of Stimulation	Electrical	Magnetic	Magnetic	Electrical	Electrical
Convulsive	×	×	✓	✓	×
GA	×	×	✓	✓	✓ (Surgical implantation)
Mechanism of action	Subthreshold modulation of membrane potential	Activation of inhibitory interneurons	Focal activation of inhibitory interneurons	General activation of pyramidal neurons	Activation of local circuit

Electroconvulsive therapy (ECT)

Indications for ECT

- Treatment-refractory conditions
- Severe or life-threatening psychiatric illness
- Most often used for the treatment of medication-resistant depression (MDD)

Indications for ECT

- Resistant MDE with or without psychosis, Unipolar or Bipolar
- Refractory Mania
- Resistant Psychosis (Schizophrenia, SCZA)
- Refractory OCD
- Catatonia
- Parkinson's Disease
- Refractory Status Epilepticus

Contraindications to ECT

• There are no absolute contraindications to ECT

- Relative contraindications do exist
 - When should we wait?
 - When should we proceed with caution?

Relative Contraindications to ECT

- Intracranial lesion with mass effect
- Recent stroke (less than 1 month)
- Recent MI (less than 1 month)
- Unstable aneurysm or vascular malformation
- Recent orthopedic injury with unstable fracture/dislocation (less than 1 month)

(APA Guidelines 2001, Tess et al. 2009)

Morbidity & Mortality

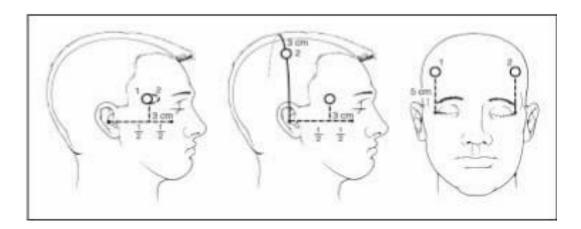
- Mortality 2.1 per 100,000 (Torring et al, European Psychiatry, 2017)
 - Meta-analysis of 14 studies, 757,662 ECT treatments
 - Risk of death associated with GA+surgical procedure = 3.4/100,000

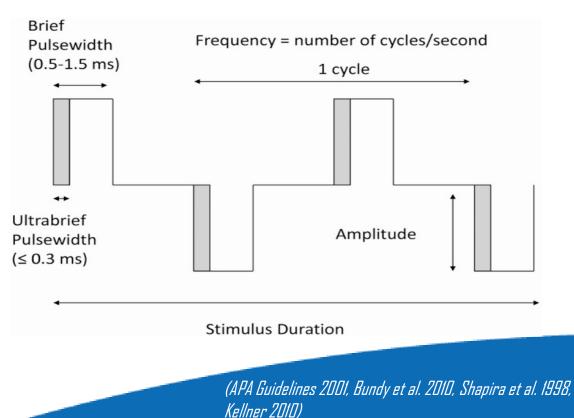
• May induce manic state

- 5-6% patients with bipolar disorder
- Continue to treat with ECT

• Risks of general anesthesia

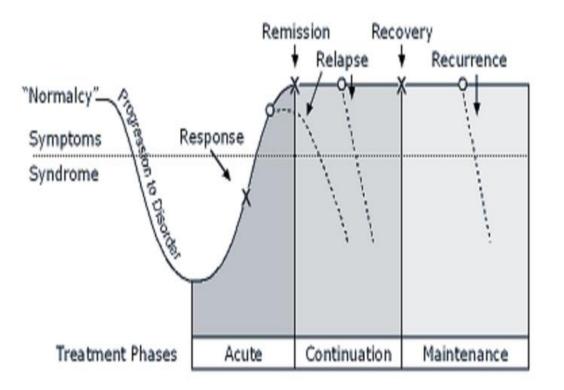
- Mortality
- Malignant hyperthermia/Allergic reaction
- Cardiovascular event
- Aspiration


Side Effects


- 1. Post-ictal confusion
- 2. Transient hypertension
- 3. Cardiac changes
 - a. Bradycardia \rightarrow asystole (transient)
 - b. Ectopy/ST changes
- 4. Headache
- 5. Muscle pains (jaw pain)
- 6. Nausea
- 7. Anterograde and retrograde amnesia**

Minimizing Cognitive S/E

- 1. Electrode position
 - Bitemporal vs. Unilateral
- 2. Pulse Width
 - Standard vs. Ultrabrief
- 3. Concomitant medications
- 4. Anaesthetic doses
- 5. Stimulus intensity
 - Barely suprathreshold vs. Above threshold
- 6. Frequency of treatment
 - 2x/wk vs 3x/wk

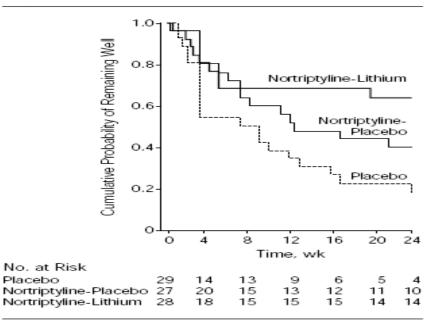

A typical course of ECT

- Acute Course
 - 6-18 treatments
 - 2-3 x per week
- Continuation Course
 - To prevent relapse
 - Fixed schedule vs. Symptom Titration (STABLE)

Maintenance Course

- Unlikely in depression
- Little evidence to stretch ECT session interval past q4 weeks
- In rare cases can be helpful to maintain mood.

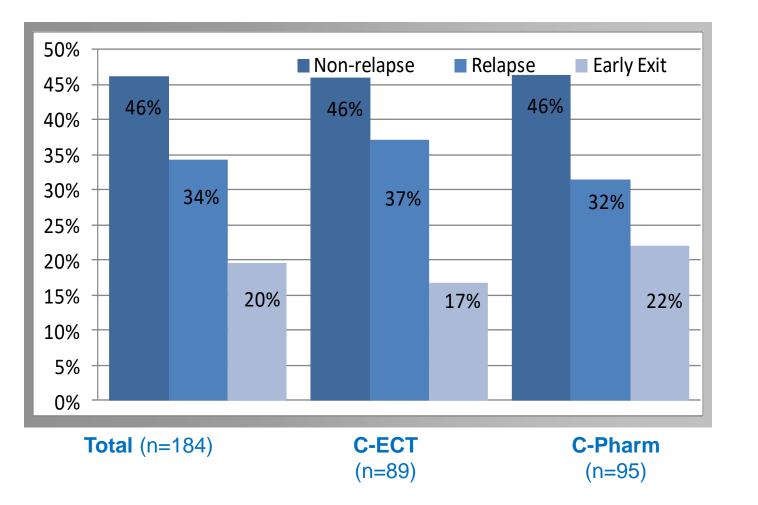
Acute/Continuation/Maintenance



(Kupfer DJ., J Clin Psychiatry. 1991; 52:28)

Relapse following Response to ECT

Figure 2. Kaplan-Meier Estimates


Proportion of patients who remained well during the continuation trial, for patients randomized to treatment with placebo (n=29), nortriptyline alone (n=27), and combination nortriptyline and lithium carbonate (n=28). "...almost universal relapse should be expected without effective continuation therapy..."

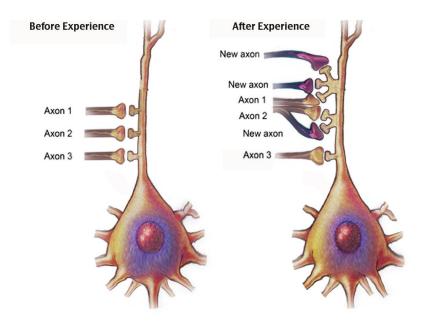
Relapse rates over 24-week trial:

- Placebo 84%
- Nortriptyline 60%
- Nortriptyline + Lithium 39%

CORE I: Relapse Status at 6 Months

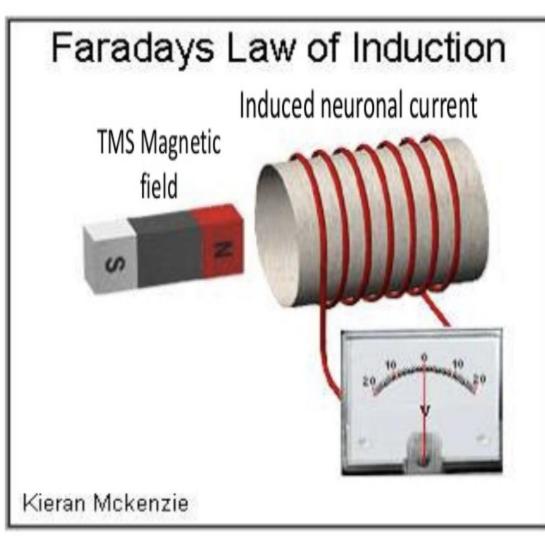
- Relapse-free Survival at 2yrs:
 - Continuation ECT + Meds 93%
 - Meds alone 52%
- Relapse-free Survival at 5 yrs:
 - Continuation ECT + Meds 73%
 - Meds alone 18%

(Gagne GG et al. Am J Psychiatry, 2000)

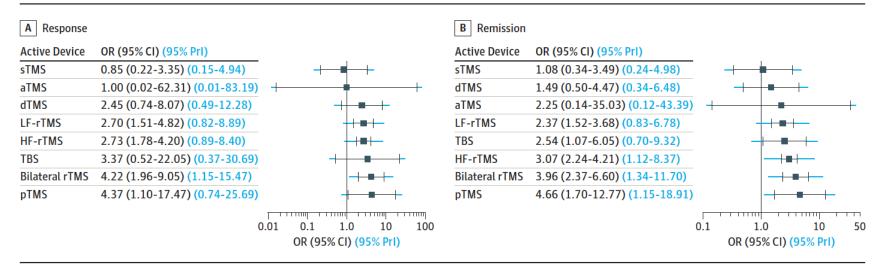

(Kellner CH, et al., Arch Gen Psychiatry. 2006)

Repetitive Transcranial Magnetic Stimulation (rTMS)

	tDCS	rTMS	
Type of Stimulation	Electrical	Magnetic	
Convulsive	×	×	
GA	×	×	
Mechanism of action		Activation of inhibitory interneurons	


Neural Plasticity

Mechanisms of rTMS



- 1. A paddle with loops capable of carrying electric current is held on the head
- 2. A current travels through the loops, generating a magnetic field perpendicular to the paddle. The field is strongest where the coils meet
- 3. Bursts of current cause changes in the magnetic field
- 4. Changes in the magnetic field induce an electric current in the brain that stimulates neurons
- 5. Moving the paddle changes the location of the induced current

rTMS for Major Depressive Disorder

- Health Canada approved treatment for MDD
- Well established efficacy

Figure 3. Forest Plot Showing the Network Relative Odds Ratios (ORs) With Their 95% CIs and Predictive Intervals (PrI)

aTMS indicates accelerated TMS; dTMS, "deep" (H-coil) TMS; HF, high frequency; LF, low frequency; pTMS, priming TMS; sTMS, synchronized TMS; TBS, θ-burst stimulation.

Benefits and Challenges of rTMS

Benefits

- Less invasive than ECT
- Minimal side effects
- No anesthesia (can continue daily activities as normal encouraged)

Challenges

- Commitment
- Daily travel, accessibility
- Side Effects
- Pain
- Headaches
- Fatigue

Spontaneous Adverse Events with rTMS

	Patients Reporting, No (%)			
	Active rTMS group (n = 92)	Sham rTMS Group (n = 98)		
Headache	29 (32)	23 (23)		
Discomfort at the stimulation site	17 (18)	10 (10)		
Insomnia	7 (7.6)	10 (10)		
Worsening of depression or anxiety	6 (7)	8 (8)		
Gastrointestinal	6(7)	3 (3)		
Fatigue	5 (5)	4 (4)		
Muscle aches	4(4)	4 (4)		
Vertigo	2(2)	2 (2)		
Skin pain	1 (1)	1 (1)		
Facial muscle twitching	0	1 (1)		
Other	18 (20)	15 (15)		

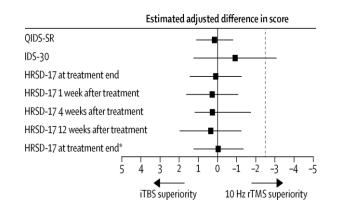
Who might benefit from rTMS?

More likely

- Previous euthymia
- No chronic anhedonia
- Mild to moderate symptoms
- No evidence of psychosis
- Fewer treatment trials
- Not on benzodiazepines
- Not on anticonvulsants
 Table 1
 Transcranial Magnetic Stimulation Evaluation

Variables to Assess Before Commencing rTMS				
Variable	What to Do if the Variable Is Endorsed by the Patient			
 History of epilepsy 	Determine with the patient the risk/benefit ratio of administering rTMS given the presence of risk variables.			
 Family history of epilepsy 	· Inform the patient that the presence of 1 or more of these variables could increase the risk of rTMS-associated adverse			
 History of seizure 	effects including a TMS-associated seizure.			
 History of head trauma 	· Consider consultation with other health care professionals (eg, neurologist) to assess risks of possible rTMS-associated			
 History of loss of consciousness 	adverse effects before commencing treatment with rTMS.			
 History of stroke 				
 History of brain tumor 				
 History of traumatic brain injury 				
 Any implanted medical devices 				
Any metal in the head				
 Current use of medication(s) that 	· Document the medications including drug name and dosage. Use the information to create an individualized medication			
lower seizure threshold	checklist and update this list at each rTMS session.			
	· Encourage the patient and their psychiatric provider to keep medications stable during the rTMS course and to inform the			
	rTMS clinical staff of any changes in medication use.			
Current alcohol/substance use	Document the type and amount of alcohol/substance consumed.			
	 Provide education on the effects of alcohol/substance use on rTMS. 			

Less likely

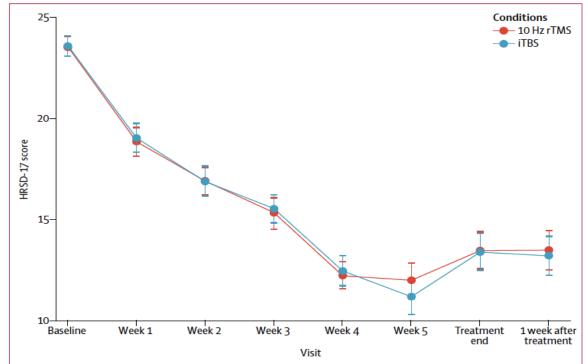

- Dysthymia without depression
- Chronically anhedonic
- Previous non-response to rTMS or ECT
- Ambivalent commitment to rTMS
- Active and un-minimized stressors
- On benzodiazepines or anticonvulsants

(McClintock, J Clin Psychiatry, 2018)

Recent Developments – Theta Burst Stimulation

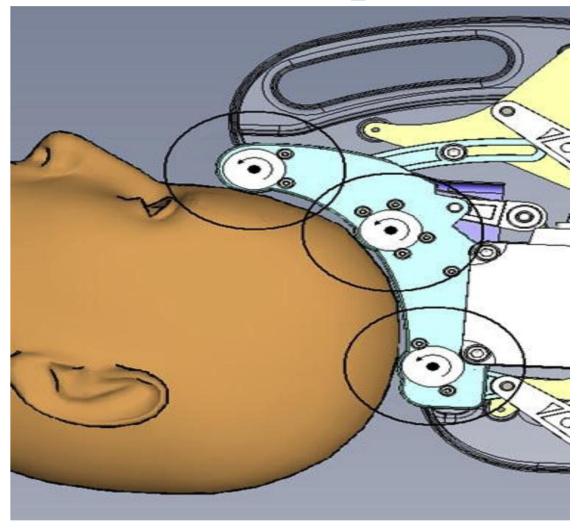
(TBS)

- Mimics endogenous theta rhythms which induces neuroplasticity in the brain
- 1/10th of the time (3min) compared to standard rTMS



THE LANCET	THE LANCE
/olume 391, Issue 10131, 28 April–4 May 2018, Pages 1683-1692	The second second
	gen her gen her bi

Articles


Effectiveness of theta burst versus high-frequency repetitive transcranial magnetic stimulation in patients with depression (THREE-D): a randomised non-inferiority trial

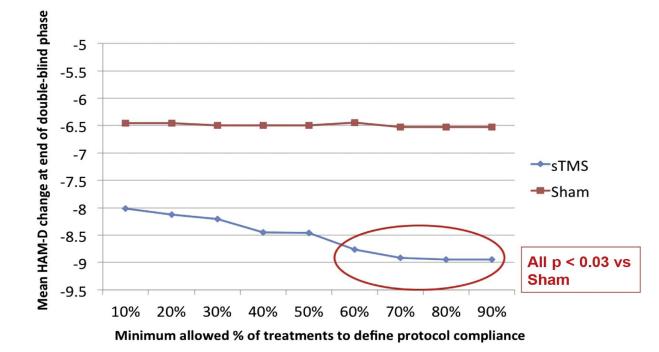
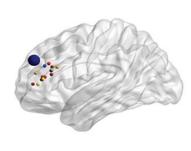
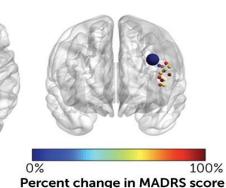

Daniel M Blumberger MD ^{a, b, c} $\stackrel{a, b, c}{\rightarrow}$ $\stackrel{a}{\approx}$, Fidel Vila-Rodriguez MD ^{e, f}, Kevin E Thorpe MMath ^{d, a, b,} Kfir Feffer MD ^{i, j}, Yoshihiro Noda MD ^k, Peter Giacobbe MD ^{b, l, m}, Yuliya Knyahnytska MD ^{a, b}, Prof Sidney H Kennedy MD ^{b, c, h, c}, Prof Raymond W Lam ^f, Prof Zafiris J Daskalakis MD ^{a, b, c}, Jonathan Downar MD ^{b, c, m, n, c}

Figure 3: Change in HRSD-17 scores over time, comparing the 10 Hz rTMS and iTBS treatment groups Data are mean scores with lower and upper 90% CIs.

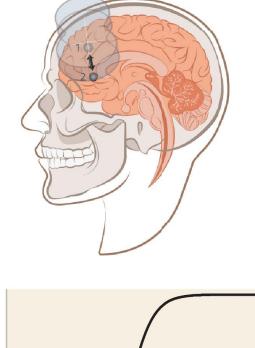
Recent Developments - Synchronized TMS (sTMS)


- Pulses delivered in conjunction with EEG
- Synchronized with alpha rhythm
- Low intensity sinusoidal waveform


(Leuchter et al, Brain Stimulation, 2015)

Recent Developments – SNT Protocol

- 10 iTBS sessions/day x 5 days
- 18,000 pulses/day
 - 3x dose of FDA approved iTBS protocol
- fMRI guided individualized neuronavigational target
- 85.7% response, 78.6% remission



С

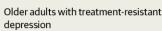
Response

Dose

Day 1	Day 2	Day 3	Day 4	Day 5
iTBS 1800				
50 minute ISI				
iTBS 1800				
50 minute ISI				
iTBS 1800				
50 minute ISI				
iTBS 1800				
50 minute ISI				
iTBS 1800				
50 minute ISI				
iTBS 1800				
50 minute ISI				
iTBS 1800				
50 minute ISI				
iTBS 1800				
50 minute ISI				
iTBS 1800				
50 minute ISI				
iTBS 1800				
50 minute ISI				

(Cole et al, AJP, 2019, Cole et al, AJP, 2021)

rTMS for Late-Life Depression


JAMA Psychiatry

RCT: Effectiveness of Standard Sequential Bilateral Repetitive Transcranial Magnetic Stimulation vs Bilateral Theta Burst Stimulation in Older Adults With Depression

POPULATION

80 Men, 92 Women

Mean age (range), 67.1 (60-74) y

SETTINGS/LOCATIONS

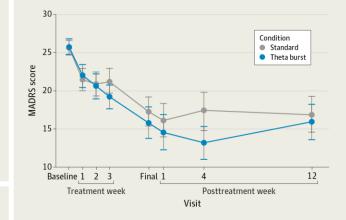
1Tertiary psychiatric

hospital in Canada

INTERVENTION

172 Patients randomized

. . .


PRIMARY OUTCOME

87 Standard repetitive transcranial magnetic stimulation (rTMS) Standard sequential bilateral rTMS for 47.5 min

85 Theta burst stimulation (TBS) Bilateral TBS for 4 min

FINDINGS

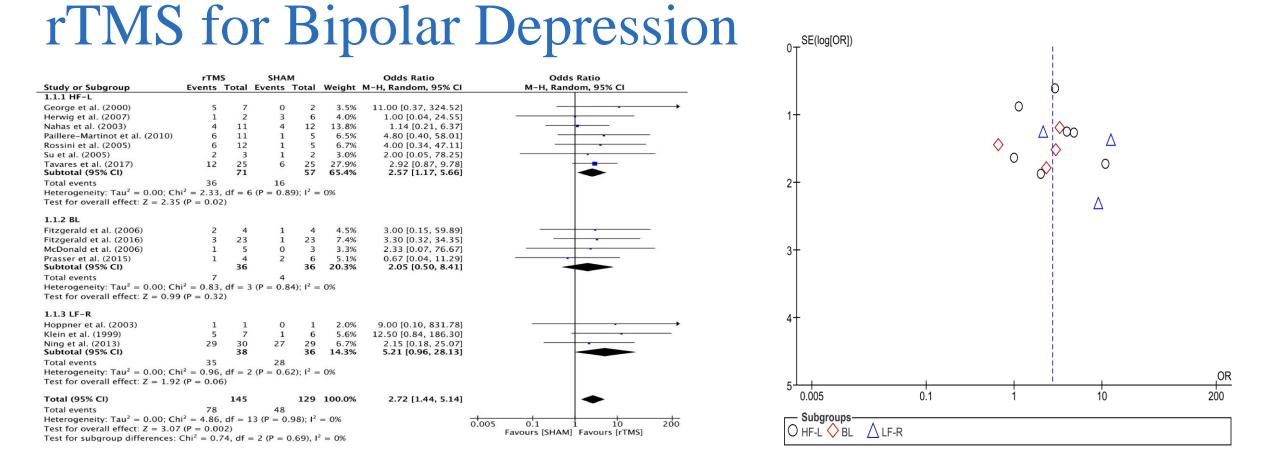
The estimated adjusted difference in MADRS change was 1.55 points in favor of TBS. This was lower than the a priori margin of 2.75 in favor of standard rTMS, establishing noninferiority.

Mean (SD) MADRS total score improvement rTMS from 25.6 (4.0) to 17.3 (8.9) TBS from 25.7 (4.7) to 15.8 (9.1)

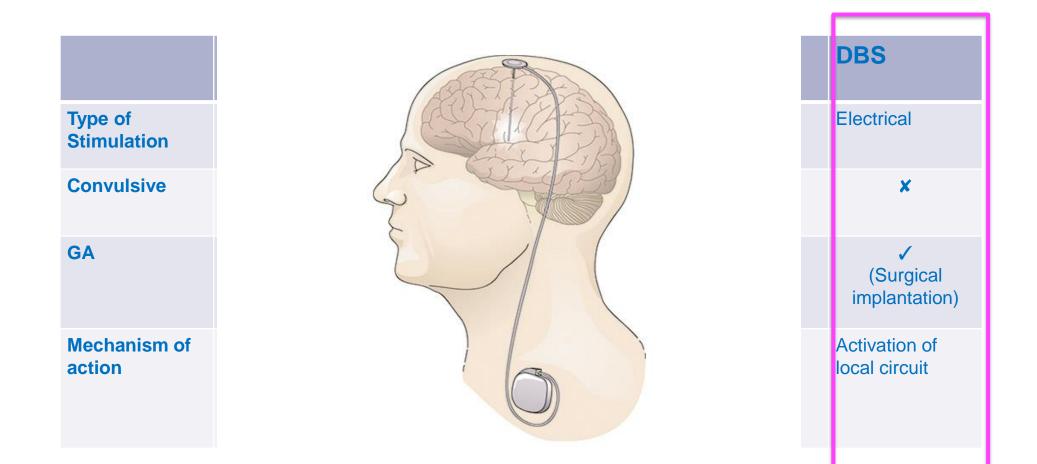
Blumberger DM, Mulsant BH, Thorpe KE, et al. Effectiveness of standard sequential bilateral repetitive transcranial magnetic stimulation vs bilateral theta burst stimulation in older adults with depression: the FOUR-D randomized noninferiority clinical trial. JAMA Psychiatry. Published online September 21, 2022. doi:10.1001/jamapsychiatry.2022.2862

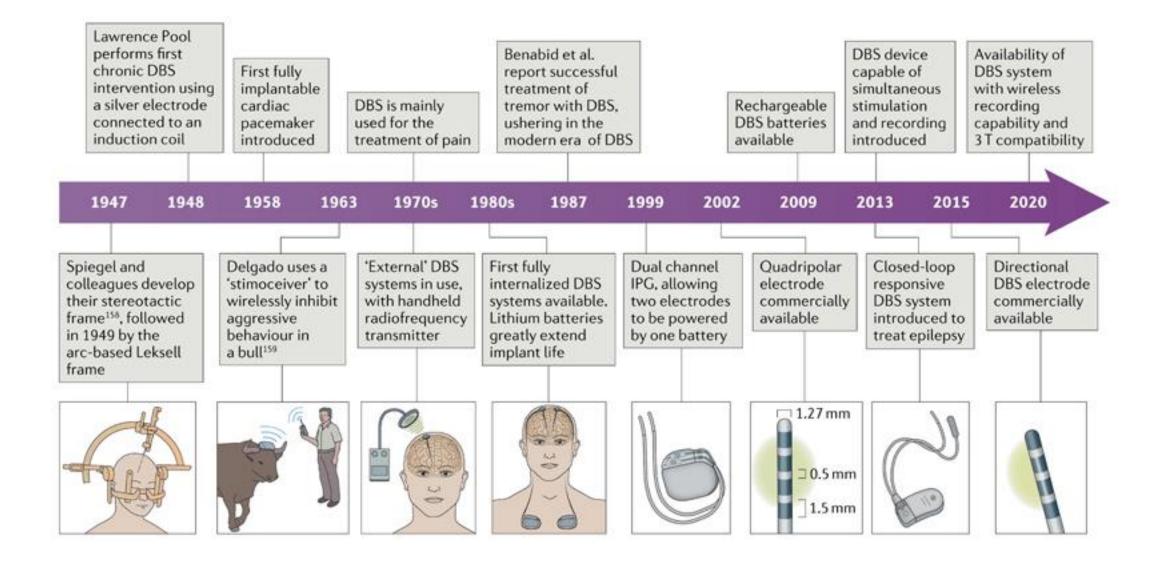
Change in the Montgomery-Åsberg Depression Rating Scale (MADRS)

(range, 0-50) was the primary outcome measure from baseline to end

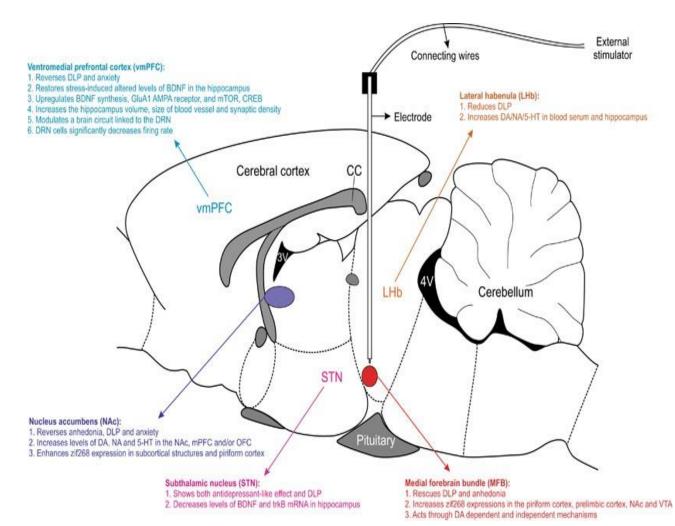

of treatment in those who completed the majority of the 4-wk treatment.

О


© AMA


- rTMS is better than sham
- No consensus on optimal paradigm or parameters

Deep Brain Stimulation (DBS)

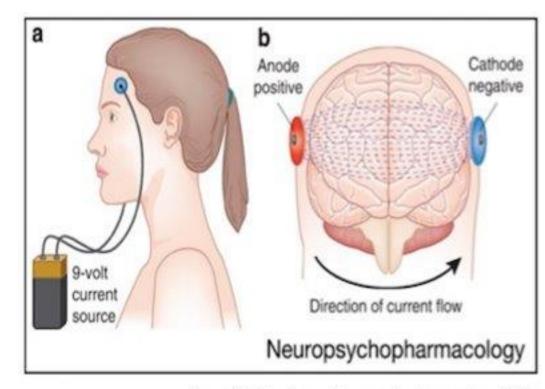


DBS for MDD

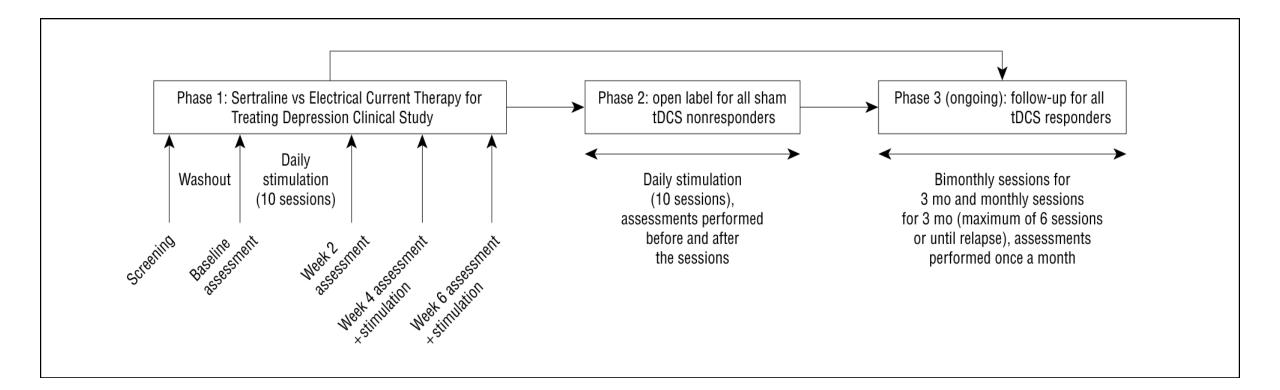
				Odds Ratio	Odds Ratio	
Study or Subgroup	log[Odds Ratio]	SE	Weight	IV, Random, 95% C	IV, Random, 95% Cl	
1.1.1 Internal/ ventral	capsule					
Bergfeld 2016	2.62	0.72	20.9%	13.74 [3.35, 56.33]		
Dougherty 2014	0.33	0.997	11.4%	1.39 [0.20, 9.82]		
Subtotal (95% CI)			32.3%	4.85 [0.52, 45.32]		
Heterogeneity: Tau ² = '	1.87; Chi ² = 3.47, d	f = 1 (P	= 0.06); I	² = 71%		
Test for overall effect: 2	Z = 1.38 (P = 0.17)					
1.1.2 Subcallosal cing	julate					
Holtzheimer 2012	1.44	1.83	3.5%	4.22 [0.12, 152.43]		
Holtzheimer 2017	0	0.89	14.1%	1.00 [0.17, 5.72]		
Merkl 2016	1.98	1.67	4.2%	7.24 [0.27, 191.17]		
Puigdemont 2015	1.79	1.44	5.6%	5.99 [0.36, 100.72]		
Ramasubbu 2013	3.045	1.78	3.7%	21.01 [0.64, 687.96]	-	
Subtotal (95% CI)			31.3%	2.98 [0.91, 9.77]	•	
Heterogeneity: Tau ² = (0.00; Chi² = 3.26, d	f = 4 (P	= 0.51); I	² = 0%	25	
Test for overall effect: 2		6 800 %				
1.1.3 Medial Forebrain	n Bundle					
Fenoy 2016	1.95	0.97	12.0%	7.03 [1.05, 47.05]		
Schlaepfer 2016	2.2	0.66	24.4%	9.03 [2.48, 32.90]		
Subtotal (95% CI)			36.4%	8.34 [2.86, 24.30]	•	
Heterogeneity: Tau ² = (0.00; Chi² = 0.05, d	f = 1 (P	= 0.83);	² = 0%		
Test for overall effect: 2						
	,					
Total (95% CI)			100.0%	5.50 [2.79, 10.85]	•	
Heterogeneity: Tau ² = (Heterogeneity: Tau ² = 0.06; Chi ² = 8.43, df = 8 (P = 0.39); l ² = 5%					
	Test for every effect $Z = 4.02 (B < 0.00001)$ 0.001 0.1 1 10 1000					
	Test for subgroup differences: $Chi^2 = 1.60$, df = 2 (P = 0.45), $l^2 = 0\%$ Favours sham Favours active					
		,	(· · · · ·	,, · · · · ·		

(Dandekar, Mol. Psych., 2018, Kisely et al, Dep & Anxiety, 2018)

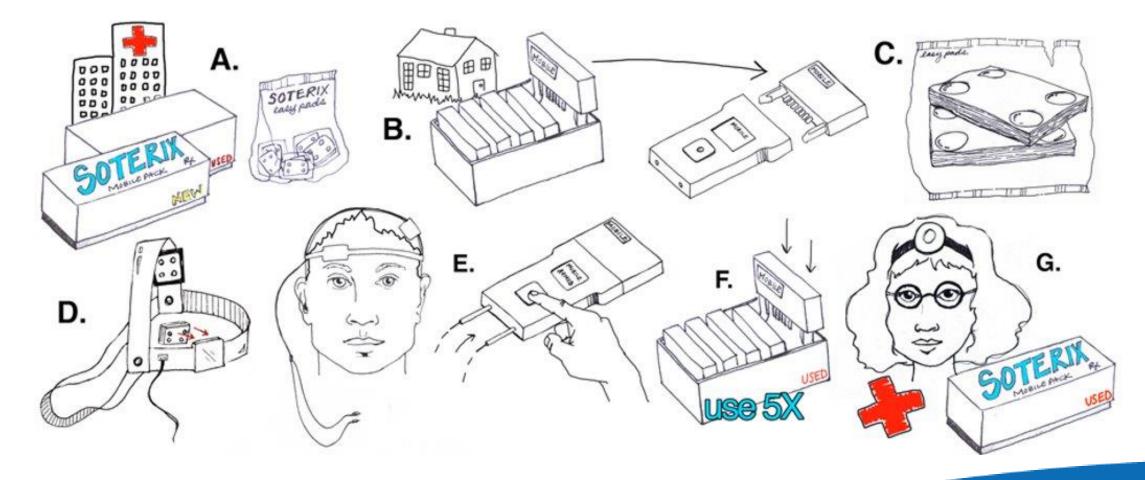
Electrical Stimulation - tDCS & tACS


	tDCS
Type of Stimulation	Electrical
Convulsive	×
GA	×
Mechanism of action	Subthreshold modulation of membrane potential

tDCS/tACS


- Noninvasive electrical stimulation applied to the scalp
- Low amplitude direct or alternating current
- Thought to induce changes in cortical excitability
- With guidance, can be used at home
- No seizures
- Minimally invasive, few side effects
 - Drowsiness, headache, skin itching at site of stimulation
- Most side effects avoided with proper technique

George & Aston-Jones, Neuropsychopharmacology, 2010


SELECT Trial

(Brunoni et al, JAMA Psych, 2013)

Opportunity for At Home Brain Stimulation

Magnetic Seizure Therapy (MST)

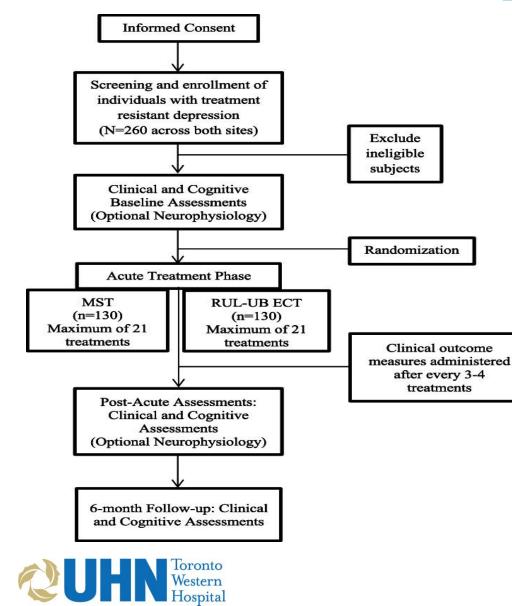
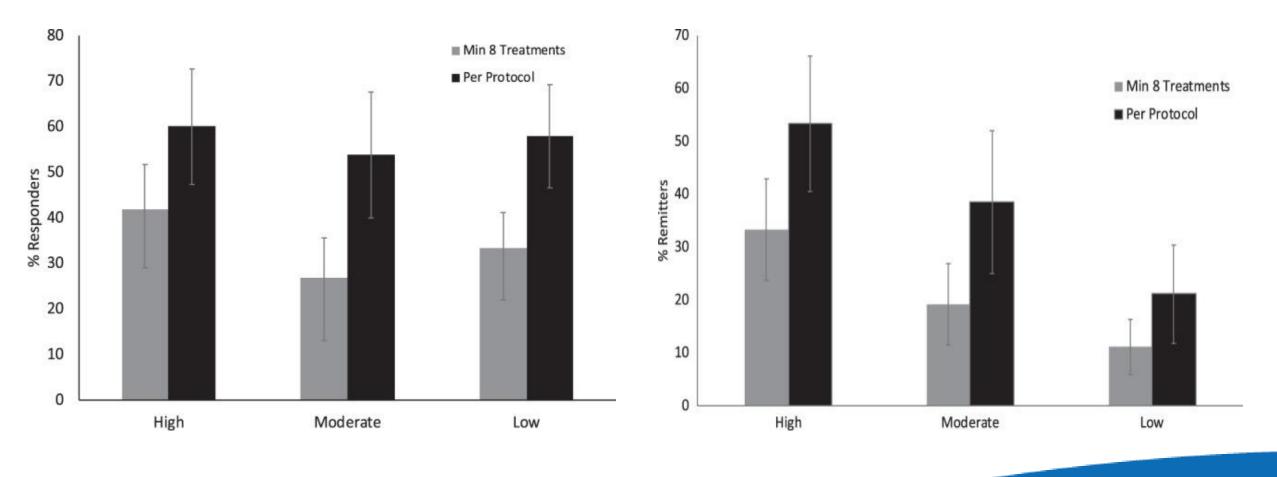
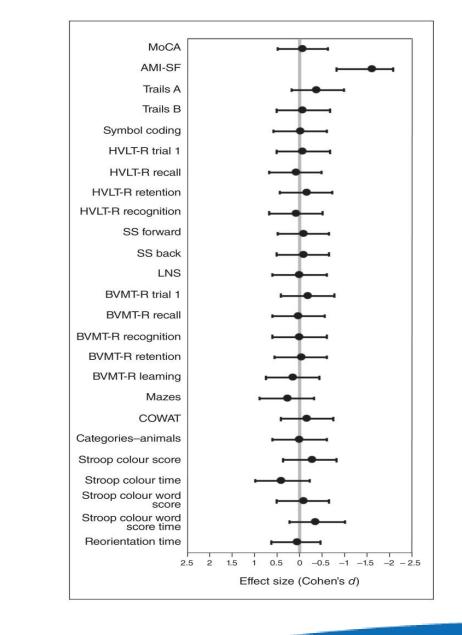


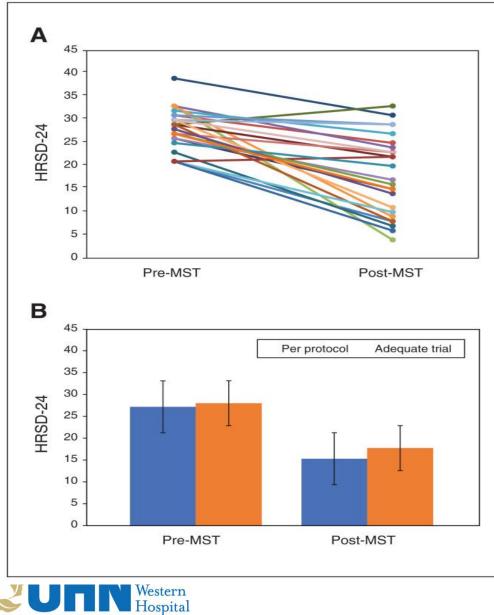
Figure 1. This figure demonstrates that (A) MST produces a seizure with much lower e-field strength (cooler colors) compared to (B) right unilateral ECT or (C) bilateral ECT which requires much higher e-field strength (hot colors) to produce an adequate seizure. Additionally, the skull shunts the electrical field making the electrical field from ECT largely non-focal. It is postulated that more focality and lower e-field strength contributes to the preservation of cognitive performance of MST compared to ECT. Modified from Fig 3, Deng et al. 2011.

MST	ECT	DBS
Magnetic	Electrical	Electrical
1		×
1		
Focal activation of inhibitory interneurons	General activation of pyramidal neurons	Activation of local circuit


CREST Trial – Comparing MST with ECT

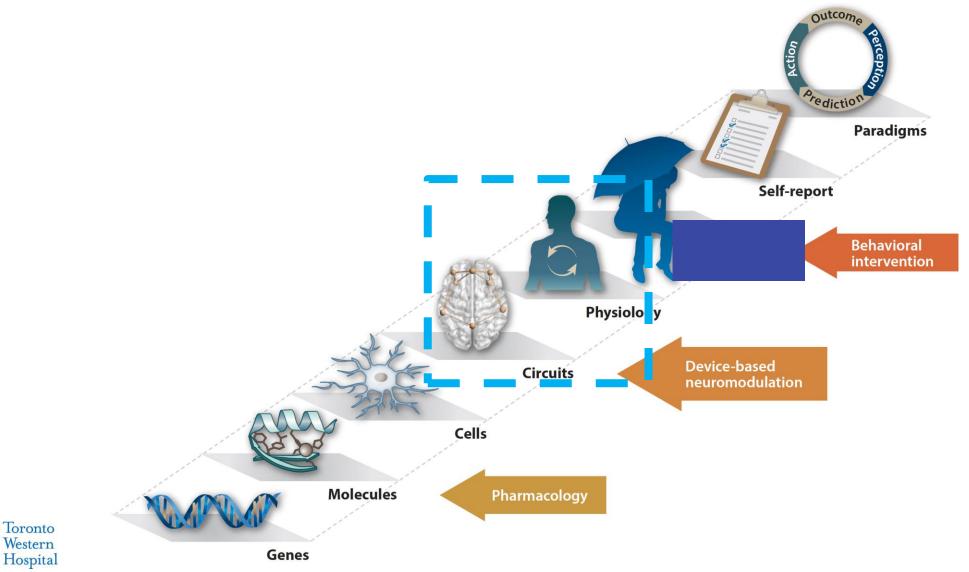

(Daskalakis et al, Trials, 2021)

MST for Treatment Resistant Depression

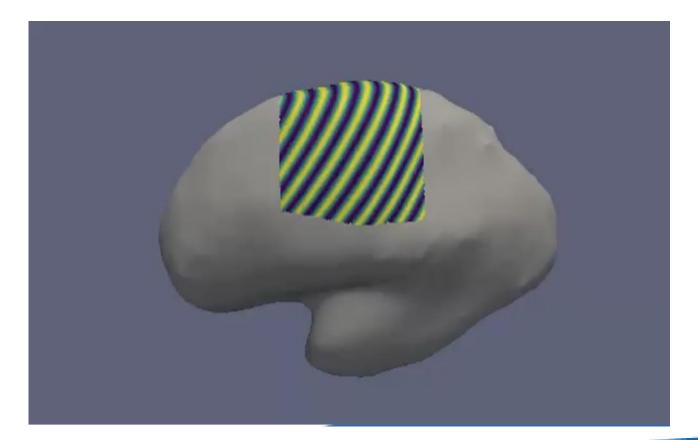


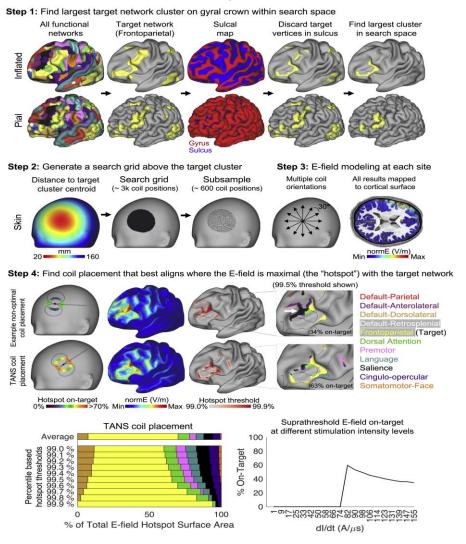
(Daskalakis et al, Neuropsychopharm, 2020)

MST for Bipolar Depression

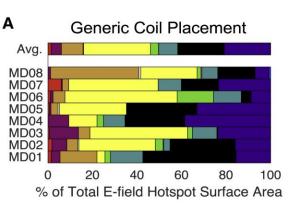

(Tang et al, Biological Psych, 2021)

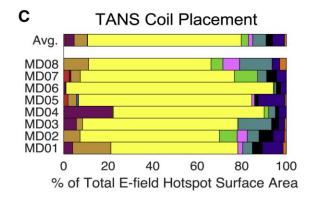
Future Directions


Establishing Biomarkers to Guide Treatment

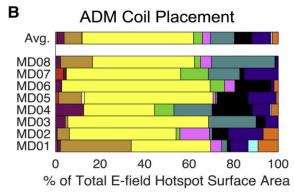


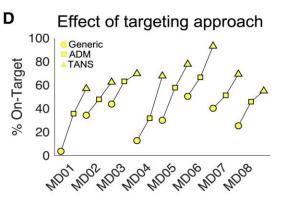
Personalizing rTMS

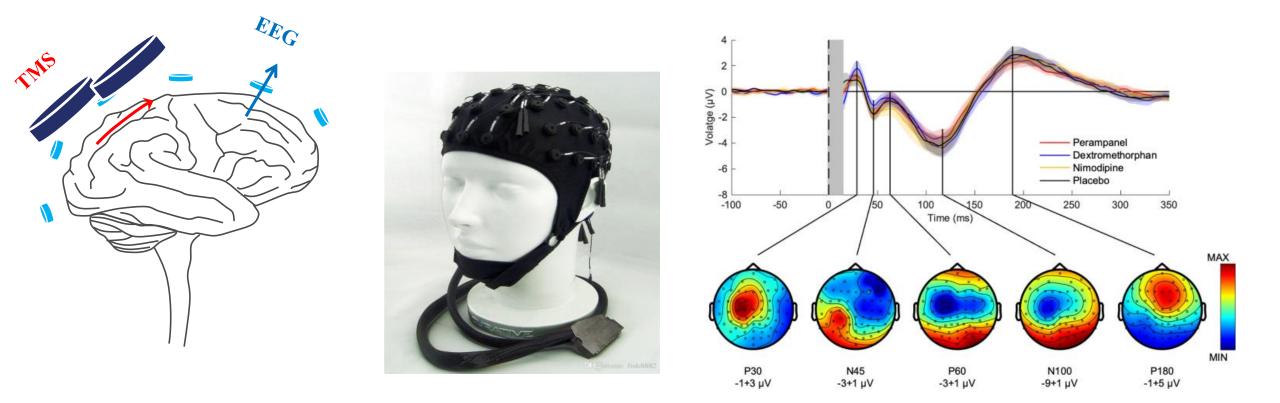


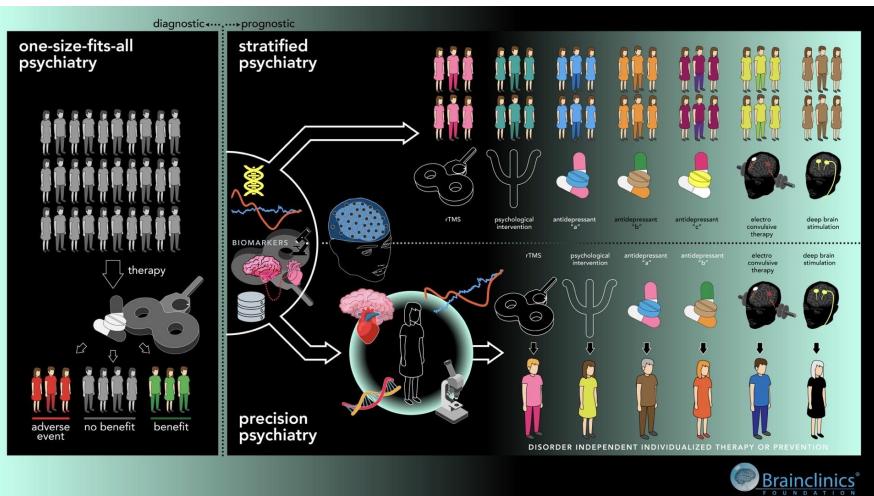


Connectivity-Based rTMS






Default-Parietal	Premotor
Default-Anterolateral	Language
Default-Dorsolateral	Salience
Default-Retrosplenial	Cingulo-opercular
Frontoparietal (Target)	Somatomotor-Hanc
Dorsal Attention	Somatomotor-Face


(Liston et al, Neuron, 2022)

Establishing Biomarkers to Guide Treatment

The Goal

Toronto Western Hospital

Sincerest Thanks to:

The Hansen Family Jenna McLeod Marla Kaye Dr. Susan Abbey Dr. Daniel Blumberger